Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1295063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145044

RESUMO

Polymicrobial infections include various microorganisms, often necessitating different treatment methods than a monomicrobial infection. Scientists have been puzzled by the complex interactions within these communities for generations. The presence of specific microorganisms warrants a chronic infection and impacts crucial factors such as virulence and antibiotic susceptibility. Game theory is valuable for scenarios involving multiple decision-makers, but its relevance to polymicrobial infections is limited. Eco-evolutionary dynamics introduce causation for multiple proteomic interactions like metabolic syntropy and niche segregation. The review culminates both these giants to form evolutionary dynamics (ED). There is a significant amount of literature on inter-bacterial interactions that remain unsynchronised. Such raw data can only be moulded by analysing the ED involved. The review culminates the inter-bacterial interactions in multiple clinically relevant polymicrobial infections like chronic wounds, CAUTI, otitis media and dental carries. The data is further moulded with ED to analyse the niche colonisation of two notoriously competitive bacteria: S.aureus and P.aeruginosa. The review attempts to develop a future trajectory for polymicrobial research by following recent innovative strategies incorporating ED to curb polymicrobial infections.


Assuntos
Coinfecção , Humanos , Coinfecção/microbiologia , Proteômica , Staphylococcus aureus , Bactérias , Virulência , Pseudomonas aeruginosa/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1245808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900321

RESUMO

Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Vagina/microbiologia , Virulência
3.
Front Pharmacol ; 14: 1282073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829306

RESUMO

Nanocomposites, formed by combining a matrix (commonly polymer or ceramic) with nanofillers (nano-sized inclusions like nanoparticles or nanofibers), possess distinct attributes attributed to their composition. Their unique physicochemical properties and interaction capabilities with microbial cells position them as a promising avenue for infectious disease treatment. The escalating prevalence of multi-drug resistant bacteria intensifies the need for alternative solutions. Traditional approaches involve antimicrobial agents like antibiotics, antivirals, and antifungals, targeting specific microbial aspects. This review presents a comprehensive overview of diverse nanocomposite types and highlights the potential of tailored matrix and antibacterial agent selection within nanocomposites to enhance treatment efficacy and decrease antibiotic resistance risks. Challenges such as toxicity, safety, and scalability in clinical applications are also acknowledged. Ultimately, the convergence of nanotechnology and infectious disease research offers the prospect of enhanced therapeutic strategies, envisioning a future wherein advanced materials revolutionize the landscape of medical treatment.

4.
Sci Rep ; 13(1): 11373, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452106

RESUMO

The present study attempts to treat S. aureus-induced soft skin infections using a combinatorial therapy with an antibiotic, Ciprofloxacin (CIP), and an efflux pump inhibitor 5-Nitro-2-(3-phenylpropoxy) pyridine (5-NPPP) through a smart hydrogel delivery system. The study aims to reduce the increasing rates of infections and antimicrobial resistance; therefore, an efflux pump inhibitor molecule is synthesized and delivered along with an antibiotic to re-sensitize the pathogen towards antibiotics and treat the infections. CIP-loaded polyvinyl alcohol (PVA) hydrogels at varying concentrations were fabricated and optimized by a chemical cross-linking process, which exhibited sustained drug release for 5 days. The compound 5-NPPP loaded hydrogels provided linear drug release for 2 days, necessitating the need for the development of polymeric nanoparticles to alter the release drug pattern. 5-NPPP loaded Eudragit RSPO nanoparticles were prepared by modified nanoprecipitation-solvent evaporation method, which showed optimum average particle size of 230-280 nm with > 90% drug entrapment efficiency. The 5-NPPP polymeric nanoparticles loaded PVA hydrogels were fabricated to provide a predetermined sustained release of the compound to provide a synergistic effect. The selected 7% PVA hydrogels loaded with the dual drugs were evaluated using Balb/c mice models induced with S. aureus soft skin infections. The results of in vivo studies were evidence that the dual drugs loaded hydrogels were non-toxic and reduced the bacterial load causing re-sensitization towards antibiotics, which could initiate re-epithelization. The research concluded that the PVA hydrogels loaded with CIP and 5-NPPP nanoparticles could be an ideal and promising drug delivery system for treating S. aureus-induced skin infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Camundongos , Animais , Polímeros/química , Fluoroquinolonas/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Hidrogéis/química , Infecções Estafilocócicas/tratamento farmacológico , Liberação Controlada de Fármacos
5.
Front Cell Infect Microbiol ; 13: 1159798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457962

RESUMO

The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.


Assuntos
Enterococcus faecium , Infecções Estafilocócicas , Humanos , Percepção de Quorum , Antibacterianos , Virulência , Infecções Estafilocócicas/microbiologia
6.
Front Cell Infect Microbiol ; 13: 1139026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287465

RESUMO

Advancements in biomedical devices are ingenious and indispensable in health care to save millions of lives. However, microbial contamination paves the way for biofilm colonisation on medical devices leading to device-associated infections with high morbidity and mortality. The biofilms elude antibiotics facilitating antimicrobial resistance (AMR) and the persistence of infections. This review explores nature-inspired concepts and multi-functional approaches for tuning in next-generation devices with antibacterial surfaces to mitigate resistant bacterial infections. Direct implementation of natural inspirations, like nanostructures on insect wings, shark skin, and lotus leaves, has proved promising in developing antibacterial, antiadhesive, and self-cleaning surfaces, including impressive SLIPS with broad-spectrum antibacterial properties. Effective antimicrobial touch surfaces, photocatalytic coatings on medical devices, and conventional self-polishing coatings are also reviewed to develop multi-functional antibacterial surfaces to mitigate healthcare-associated infections (HAIs).


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Animais , Biofilmes , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Folhas de Planta
7.
Crit Rev Microbiol ; : 1-12, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548910

RESUMO

A stable but reversible phenotype switch from normal to persister state is advantageous to the intracellular pathogens to cause recurrent infections and to evade the host immune system. Staphylococcus aureus is a versatile opportunistic pathogen known to cause chronic infections with significant mortality. One of the notable features is the ability to switch to a per-sisters cell, which is found in planktonic and biofilm states. This phenotypic switch is always an open question to explore the hidden fundamental science that coheres with a calculated or fortuitous move. Toxin-antitoxin modules, nutrient stress, and an erroneous translation-enabled state of dormancy entail this persistent behaviour in S. aureus. It is paramount to get a clear picture of why the cell chooses to enter a persistent condition, as it would decide the course of treatment. Analyzing the exit from a persistent state to an active state and the subsequent repercussion of this transition is essential to determine its role in chronic infections. This review attempts to provide a constructed argument discussing the most widely accepted mechanisms and identifying the various attributes of persistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA